虹膜识别,作为与指纹识别、人脸识别并称的三大模态之一,能够作为精确的身份识别。虹膜的形成由胚胎发育环境中的随机因素决定,这使得每个人都具有独一无二的虹膜纹理,哪怕是双胞胎,都不相同。
虹膜识别,作为与指纹识别、人脸识别并称的三大模态之一,能够作为精确的身份识别。虹膜的形成由胚胎发育环境中的随机因素决定,这使得每个人都具有独一无二的虹膜纹理,哪怕是双胞胎,都不相同。人脸会随年龄而改变,指纹会磨损,虹膜纹理在人类出生 8 个月之后,就已稳定成型,几乎终身不变。
作为世界人口第二大国,印度从 2010 年启动世界上最庞大的生物识别系统工程,采集全国 12 亿人口的虹膜数据,并与身份信息绑定,从而提升政府管理水平,并将虹膜识别应用于各个领域。
无论是虹膜识别方案,还是虹膜识别设备,只要进入印度,就必须通过 STQC 认证测试。每个虹膜识别提供商都需要现场采集 5000 多人的虹膜数据,实时传输到服务器进行比对,评测指标包括比对速度和错误拒绝率。
从大型设备到小型终端设备
然而,从大型设备过渡到小型终端设备,并非易事。硬件和算法都面临双重挑战。
对 2D 人脸识别来说,只要有摄像头,再搭载人脸识别算法即可。但虹膜识别却需要专门的硬件。市面上流行的智能手机前摄镜头拥有广阔的视场角,因为它不仅需要拍摄面部区域,还需要拍摄更大的区域。然而,要进行虹膜识别,虹膜图像的质量必须达到一定要求,比如虹膜直径要大于 160 像素,这就需要视场角更小的摄像头。此外,通常的手机摄像头拍摄的是可见光,但虹膜必须在近红外光下才能呈现丰富的纹理特征,因而需要可拍摄近红外光的摄像头。而虹膜摄像头的参数,比如景深等,也与普通摄像头有所区别。
因此,如果要在手机上应用虹膜识别,需要对手机进行硬件改造:前置摄镜头,用来捕捉图像;虹膜采集装置,用来获取虹膜图像;近红外灯,充当主动光源,三个模组共同作用,完成对虹膜图像的采集。
算法的挑战则表现在,早期的虹膜识别设备需要用户主动配合,人眼注视设备。但是,手机用户的习惯却多种多样,让用户高度配合,并不现实。要解决这个问题,就涉及手机与用户的交互。